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ABSTRACT

The problem under consideration is that of estimating simultaneously the

differences between the means of p > 2 test treatments and the mean of a

control treatment when the population variances of all p + 1 treatments are

known. Tables are given which permit the experimenter to find the minimal total

number of experimental units, and the optimal allocation of these units among

the p + 1 treatments, in order to make one-sided or two-sided confidence

interval estimates of the differences of interest. These intervals achieve a

specified joint confidence coefficient 1-a for a specified allowance or

"yardstick" associated with the common width of the intervals. The computations

for these tables are based on the results of Bechhofer (1969) for one-sided

comparisons, and Bechhofer and Nocturne (1972) for two-sided comparisons.

Key Words and Phrases: Multiple comparisons with a control, Dunnett's procedure,

optimal allocation of observations, one-sided comparisons, two-sided comparisons,

joint confidence coefficient, completely randomized design.



1. INTRODUCTION

The problem of comparing simultaneously p > 2 test treatments with a

cottrol treatment arises frequently in applied research. Dunnett (1955),

(1964) considered this problem and provided constants necessary to make joint

100(l-a) percent confidence statements (either one-sided or two sided)

between the mean of each of the test treatments and the mean of the control

treatment when the common variance of the p + 1 treatments is unknown.

An important design decision in this problem is that of how to allocate

the experimental units optimally among the test treatments and the control

treatment when the p f 1 variances are known and possibly unequal. Bechhofer

(1969) (hereinafter referred to as BI) gave a solution to this problem for

one-sided comparisons; this solution is globally optimal if the variances of

the p test treatment:s are equal, and optimal in a restricted sense if these

vaiiances are unequal. Bechhofer and Nocturne (1972) (hereinafter referred

to as B2) generalized these results to two-sided comparisons. Bechhofer

and Turnbull (1971) gave a globally optimal solution to this problem for

one-sided comparisons when the p test variances are known and unequal.

Only small illust-?ative sets of tables of optimal allocations

(all for p = 2) were given in B1 and B2. In the present paper we give

an extensive set of tables for p = 2(1)10 both for joint one-sided or joint

twc-sided comparisons based on the formulae given in Bl and B2. (See

Remark 2.2 for the case p = 1.) For such comparisons these tables can be

used to determine the smallest total number of observations necessary to

gu,,rantee selected confidence coefficients (0.75(0.05)0.95, 0.99) for given

spcified allowance or "yardstick" associated with the common "width" of the

confidence intervals; the tables also tell how to allocate these observations

optimally to the p + I treatments.



Remark 1.1: The present paper (and all of the aforementioned papers) deals with

the case in which a completely randomized design is to be employed. However,

many practical situations may require the blocking of experimental units. If

the block size is large enough to accommodate one replication of all of the test

treatments and additional control treatments as well, then the optimal allocations

in the present paper can be used. If the blocks have a common size

k < p + 1, i.e., if the p + 1 treatments are to be compared in incomplete

blocks, then entirely new considerations are required to determine the optimal

incomplete block design. This problem is considered in Bechhofer and Tamhane

(1981).

In Section 2 we introduce our notation and pose the optimal allocation

problem both for one-sided and two-sided comparisons. The tables along with an

explanation of how they are to be used are given in Sections 3 and 4. Section

5 quantifies the loss incurred if equal allocation is used instead of the

optimal allocation. The formulae used in the computation of Tables 1 through 9,

and details of the computations are given in the Appendix.

2. NOTATION AND STATEMENT OF THE OPTIMAL ALLOCATION PROBLEMS

Let the treatments be indexed by 0,1,... ,p with 0 denoting the control

treatment and 1,2,...,'p denoting the p > 2 test treatments. We assume that

the observations X. ii i =1,2,...) on the ith treatment are normally dis-

tributed with unknown mean p.. and known variance G 2 (0 < i <~ p), and that

all observations are mutually independent. Based on N. >. 1 observations on

the ith treatment (0 <. 1 <5 p) it is desired to make either

(I) A 100(1-ai) percent joint one-sided confidence statement of the form

{V0 - p. ' 0 -x d (1 < i < p)1, (2.1)
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or

(II) A 100(1-a) percent joint two-sided confidence statement of the form

(X -x. d < p <S - x. + d (1 < i ~ ).(2.2)
0 1 - 0 ~ _ _

In (2.1) and (2.2), xi is the observed value of the random variable

Xi = X ./N. (0 < i s p), and d > 0 is a specified allowance.

The optimal allocation problem is that of finding the allocation vector

2 2 2
(N0,NI, ... N p) which for known (a0 , ,..., a P) and specified 1-% and d,

p
minimizes the total sample size N = N N subject to

i=0
~ - uij~ X - X. + d (1 i < p)) i - (2.3)

for one-sided comparisons, and

P{X - X. - d . 0 - Xi < - X' + d (l < i < p)} > 1 - a (2.4)
0 1 0 _ 0_

for two-sided comparisons. For both cases we denote the optimal allocation by
p

(NO,N1 ,. .. ,N) and the smallest total sample size by N = r V. (the partic-
i=0

ular case under consideration being clear from the context).

Remark 2.1: This same optimal allocation (N0,NI,...,Np) maximizes the joint

22 2
confidence coefficient for known (a0, a1,... ,a) and specified total sample size

P ^

N I N. and d.
i=0

Continuous approximations to the probabilities (2.3) and (2.4) are

obtained in B1 and B2, respectively, by letting

P

7i = N'i 0 N. (0 < i < p), (2.5)

and regarding the y, as nonnegative continuous variables satisfying
p1
I y. = 1. The solutions given in BI and B2 give optimal allocations

i=0

b A
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for one-sided and two-sided comparisons under the restriction that the stan-

dard errors o./&. (1 < i < p) of the test treatment means are equal,

i a. / a/Y $j;l < :.< p); if a = a ... = C , then the
23 p

solutions give globally optimal allocations.

Under the stated restriction and using the continuous approximation, the

probabilities (2.3) and (2.4) can be shown for given p to depend on

2 2 2
(a 0C. .. ,D), N and d only through y09

A = d~4o 0  (2.6)

and

P 2 2

O )/a0. (2.7)
i=l

For given p and 8, and specified 1-c the optimal solutions which we denote

by (y0,A) are uniquely determined. The simultaneous equations which yield

these solutions are given in the Appendix.

Remark 2.2: It should be noted that for p = 1 the globally optimal allocation

for one-sided and for two-sided comparisons is a 0/N0 = aIN . Then

N = {(o + a )z /d} and N. No /(a + aI) (i 0,1) for one-sided com-

parisons, the same expressions holding for two-sided comparisons with Z /2

replacing z ; here z is the upper c-point of the standard normal distri-

bution.

3. DESCRIPTION OF THE TABLES

Tables 1 through 9 give values of (y0,X) both for one-sided and

two-sided comparisons for p = 2(1)10, respectively. The tabulated values of

O 'ire correct to within one in the fourth decimal place while the tabulated

values of A are rounded up in the fourth decimal place to guarantee a joint
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conFidence coefficient > 1- for the tabulated value of YO" For each

value of p the tabulations are made for 1-a = 0.75(0.05)0.95, 0.99 and

8 = p/2 , p, 3p/ 2 and 2p. From (2.7) we see that the tables can be used for

2 2 2
the special case = p (say) (in which case the allocations are1 p

2 2
glolally optimal) when a co for c = 1/2, 1, 3/2, 2. Tn particular, the

02 2 2
p column can be used for the special case o = 2l 2 P,

An examination of the tables shows that for fixed p, 8 and 1-c%, we have

Y and A in the two-sided case always greater than the corresponding y0  and

A, respectively, in the one-sided case. In both cases for fixed p and a we

have y0  increasing with 1- and approaching the limit i/(i + /8) as 1-a

approaches unity (and hence yo/Yi 4 /a for 1 < i < p). This limiting

oi f 0

result has been proved analytically in Bi and B2 for the one-sided and two-

2 2 2sid,'d cases, respectively. For 0 = 01 = ... = a this gives the limiting
P

result that y /Yi -+ p (1 _< i < p) which leads to the recommendation of

Dunnett (1955), pp. 1106-1107 and (1964), pp. 486-487.

4. USE OF THE TABLES

2
The tables of (y 0') are to be used as follows: p and a. (0 < i < p)

are given as data of the problem; these determine B. The experimenter specifies

d, i.e., his allowance, and his one-sided or two-sided joint confidence coef-

ficient 1-a. Then p. 8, and his one-sided or two-sided 1-a determine

( 0,A). The smallest total sample size N is then the smallest integer >

2(A 0 /d) . The optimal allocations are given by N0 = y0 N (to the nearest

2 2
integer) and N. = (N-N0 )ai/5a (to the nearest integer) for (1 < i < p);

1 0 0

these approximate integer allocations which were obtained by using the con-

tinuous approximations will be very close to the exact integer allocatonq

if N i; large.



6

Table 1

Optimal allocation on the control (Y0

and associated A to achieve a given joint

confidence coefficient 1-%

p-2

l-ce______

p/2  p 3p/2 2p

0.4245 0.3519 0.3115 0.2841
l-sidod 2.0074 2.4818 2.8420 3.1441

0.7')
2-sided 0.4638 0.3868 0.3435 0.3141

2.9007 3.5403 4.0266 4.4348

1-sided 0.4417 0.3666 0.3246 0.2961

2.3226 2.8556 3.2608 3.6009

0.80
2-sided 0.4691 0.3908 0.3468 0.3169

3.1474 3.8352 4.3588 4.7986

1-sided 0.4559 0.3788 0.3354 0.3060
2.6885 3.2904 3.7486 4.1334

0.852-sided 0.4745 0.3950 0.3503 0.3198

3.4441 4.1897 4.7581 5.2357

1-sided 0.4683 0.3893 0.3448 0.3146
3.1481 3.8376 4.3631 4.8048

0.90 0.90d 0.4802 0.3995 0.354(0 0.3231
3.8298 4.6506 5.277] 5.8039

1-sided 0.4801 0.3992 0.3536 0.3225
3.8298 4.6510 5.2780 5.8053

2-sided 0.4866 0.4046 0.3583 0.3268
4.4228 5.3600 6.0763 6.6791

0.4916 0.4085 0.3616 0.3296
5.1150 6.1894 7.0114 7.7036

0.99 2 0.4939 0.4103 0.3630 0.3309
5.5882 6.7571 7.6520 8.4058

which is 0.5000 0.4142 0.3660 0.3333
lrm 0) for
(1-a )->l

i/ The upper entry in each cell of the body of the table is

0 and the lower entry is A



7

Table 2

Optimil allot at on n the control (Y)

and .i;.ocit( I X to acaiive r given joint

confidence coo ft i( cnt i-o

p = 3

p'/2 1) 3p/2 2p

0.3567 0.2920 0.2568 0.2333
2.6508 3.3507 3. 8812 4.3271

2-sided 0.4032 0.3322 0.2931 0.2669
3.6100 4.4951 5.1675 5.7314

1-sided 0.3766 0.3086 0.2713 0.2464

2.9904 3.7561 4.3378 4.8259

0. W) ided
2-sided 0.4099 0.3371 0.2971 0.2702

3.8746 4.8148 5.5299 6.1301

1-sided 0.3936 0.3227 0.2837 0.2576

3.3832 4.2266 4.8682 5.4067
0. H )-

2_sided 0.4168 0.3423 0.3013 0.2738

4.1925 5.1989 5.9654 6.6092

1_,;ided 0.4089 0.3353 0.2948 0.2675

3.8757 4.8186 5.5366 6.1398

0.s0 e 0 4241 0.3479 0.3059 0.2777
2-sided

4.6057 5.6986 6.5320 7.2326

1-sided 0.4240 0.3475 0.3053 0.2770
4.6059 5.6993 6.5336 7.2350

2-sided 0.4324 0.3543 0.3112 0.2822
5.2417 6.4690 7.4064 8.1950

0.4389 0.3591 0.3151 0.28561-sided
5.9855 7.3725 8.4332 9.3263

0.99 0 4420 0.3613 0.3163 0.2871
2-sided

6.4953 7.9931 9.1395 10.1049

l(1 + la)
which isr f 0.4495 0.3660 0.3204 0.2899l m yo for

-'The upper enlry in each cell of the body of the table is

¥0 and the lower entry is X

Ij



Table 3

Optimal allocit'*ci on the control (y
0

and associated A to achieve a given joint

confidence coefficient 1-a

p =4

1-a
p/2 p 3p/2 2p

0.3163 0.2570 0.2251 0.2040
1-sided 3.1961 4.0932 4.7742 5.3454

2-sided 0.3645 0.2978 0.2617 0.2376

4.2095 5.3084 6.1432 6.8435

1-sided 0.3366 0.2735 0.2395 0.2169
3.5555 4.5245 5.2607 5.8785

0.90. 2-sided 0.3716 0.3031 0.2659 0.2411
4.4888 5.6486 6.5307 7.2711

]-sided 0.3543 0.2879 0.2521 0.2281
3.9706 5.0246 5.8263 6.4994

2--sided 0.3791 0.3085 0.2703 0.2448
4.8244 6.0574 6.9963 7.7850

1-sided 0.3706 0.3011 0.2634 0.2383
LL.4904 5.6535 6.5394 7.2836

0.90
2-sided 0.3870 0.3144 0.2750 0.2488

5.2607 6.5894 7.6026 8.4553

1-sided 0.3868 0.3139 0.2743 0.2480
5.2609 6.5904 7.6047 8.45750.95 "

2-sided 0.3960 0.3211 0.2805 0.2535
5.9326 7.4107 8.5396 9.4894

1-sided 0.4031 0.3263 0.2846 0.2569
S.7197 8.3762 9.6432 10.7100

0.919___________2-sided 0.4064 0.3286 0.2865 0.2585
7.2602 9.0412 10.4043 11.5523

1/( + .5)
which is 0.4142 0.3333 0.2899 0.2612
lim Yo for

l1 The upper entry in each cell of the body of the table is

YO and th, lower entry is x
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Table 4

Optimal allocationi on the control (y )

and associated X to achieve a given joint

confidonce coefficient 1-x

p = 5

l-= 5

p/2 p 3p/2 2p

O-sided 0.2884 0.2331 0.2036 0.1842

3.6806 4.7562 5.5731 6.2583

0.7)
2-sided 0.3367 0.2735 0.2395 0.2170

4.7403 6.0322 7.0138 7.8374

1-sided 0.3086 0.2493 0.2176 0.1967
4.0569 5.2096 6.0857 6.8210

0.80
2-sided 0.3440 0.2787 0.2437 0.2205

5.0325 6.3901 7.4229 8.2830

1-sided 0.3263 0.2635 0.2299 0.2076
4.4911 5.7351 6.6817 7.4764

0.85 2-sided 0.3516 0.2842 0.2481 0.2241

5.3835 6.8203 7.9148 8.8342

1-sided 0.3428 0.2766 0.2411 0.2176
5.0344 6.3961 7.4334 8.3050

2-:;ided 0.3597 0.2901 0.2528 0.2281
5.8397 7.3805 8.5556 9.5434

l-::ided 0.3594 0.2396 0.2521 0.2273
5.8401 7.3819 8.5582 9.5475

2-sided 0.3690 0,.2969 0.2583 0.2327
6.5430 8.2463 9.5473 10.6420

I-:;i ded 0.3762 0.3021 0.2624 0.2361
7.3681 9.2662 10.7182 11.9406

2-sided 0.3796 0.3044 0.2642 0.2377
7.9354 9.9699 11.5272 12.8389

/ +
which is 0.3874 0.3090 0.2675 0.2403
lim Y0 for

(1-aOi-

l/The upper entry in each cell of the body of the table is

and the lower entry is A

:: ' - *,' " .. ..... I l I l I i I0
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Table 5

Optimal allocation I  on the control (y0

and associated A to achieve a given joint

confidence coefficient 1-a

p = 6

1-a
p/2 p 3p/2 2p

I-sided 0.2677 0.2154 0.1878 0.1696
4.1224 5.3627 6.3052 7.0960

2-sided 0.3154 0.2549 0.2227 0.2014
5.2230 6.6925 7.8095 8.7469

1-sided 0.2874 0.2311 0.2013 0.1816
4.5136 5.8357 6.8410 7.6848

0.80
2-sided 0.3227 0.2601 0.2268 0.2048

5.5266 7.0663 8.2380 9.2218

1-sided 0.3050 0.2451 0.2132 0.1922
4.9646 6.3838 7.4639 8.3710

0.85
2-sided 0.3303 0.2655 0.2311 0.2084

5.8913 7.5156 8.7532 9.7930

1-sided 0.3215 0.2580 0.2242 0.2020
5.5289 7.0734 8.2502 9.2391

0.90
2-sided 0.3384 0.2714 0.2358 0.2123

6.3655 8.1010 9.4249 10.5380

1-sided 0.3381 0.2708 0.2350 0.2114
6.3659 8.1027 9.4282 10.5429

2-sided 0.3477 0.2781 0.2411 0.2168
7.0968 9.0067 10.4658 11.6936

1-sided 0.3551 0.2832 0.2451 0.2201
0.99 7.9560 10.0755 11.6970 13.0624

2-sided 0.3584 0.2855 0.2469 0.2216

8.5476 10.8140 12.5493 14.0108

1/(1 +

which is 0.3660 0.2899 0.2500 0.2240
lim u0 for

!/The upper entry in each cell of the body of the table is

Y0 and the lower entry is A
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Table 6

Optimal allocation on the control (y )
and associated X to achieve a given joint

confidence coefficient 1-a

p = 7

i-a

p/2 p 3p/2 2p

0.2513 0.2016 0.1754 0.1583
1-sided 4.5320 5.9265 6.9865 7.8761

2-siled 0.2983 0.2402 0.2094 0.1891
5.6693 7.3047 8.548'? 9.5920

l-,Aided 0.2706 0.2168 0.1885 0.1698

4.9366 6.4170 7.5431 8.4886
0.80

2-sided 0.3055 0.2452 0.2134 0.1924
5.9833 7.6929 8.9942 10.0871

i-sided 0.2880 0.2304 0.200() 0.1801
5.4027 6.9855 8.1905 9.2026

0. *, ..2-sided 0.3130 0.2506 0.2176 0.1959
6.3604 8.1597 9.5308 10.6830

1-sided 0.3042 0.2431 0.2107 0.1895
5.9860 7.7010 9.0081 10.1056

0.90
2-sided 0.3211 0.2563 0.2221 0.1997

6.8509 8.7680 10.2307 11.4607

1-sided 0.3208 0.2557 0.2213 0.1988
6.8515 8.7700 10.2345 11.4663

0.95 2-sided 0.3304 0.2629 0.2273 0.2040
7.6079 9.7101 11.3165 12.6683

l-:;i(ed 0.3377 0.2679 0.2312 0.2072
8.4982 10.8236 12.6029 14.1013

o .99 2-sided 0.3410 0.2701 0.2329 0.2086

9.1120 11.5941 13.4947 15.0956

1/(1 + .5)
which iswic f 0.3483 0.2743 0.2358 0.2109

(1-a )- l

1'-Thu Uplor ,ntry in e,,ic, c(1l of the body of the table is

Y0 dnd the lower entry is A



Table 7

Optimal allocation on the control (yO0

and associated A to achieve a given joint

confidence coefficient l-a

p = 8

1-a

12 p 3p/2 2p

1-sided 0.2380 0.1904 0.1654 0.1491
4.9161 6.4561 7.6273 8.6103

0.75
2-sided 0.2841 0.2280 0.1984 0.1790

6.0870 7.8787 9.2416 10.3857

1-sided 0.2569 0.2052 0.1780 0.1603
5.3328 6.9627 8.2030 9.2444

0.80
2-sided 0.2912 0.2330 0.2023 0.1822

6.4105 8.2802 9.7038 10.9000

1-sided 0.2739 0.2184 0.1893 0.1702

5.8129 7.5499 8.8727 9.9840

0.85
2-sided 0.2987 0.2382 0.2064 0.1856

6.7991 8.7630 10.2601 11.5182

1-sided 0.2899 0.2308 0.1997 0.1793
6.4135 8.2892 9.7192 10.9211

2-sided 0.3066 0.2438 0.2108 0.1892
7.3046 9.3926 10.9860 12.3260

1-d (! d 0.3063 0.2432 0.2100 0.1883
7.3053 9.3949 10.9904 12.3325

0.95
2-si (hd 0.3158 0.2502 0.2158 0.1934

8.0853 10.3684 12.1133 13.5818

1-sided 0.3230 0.2551 0.2196 0.1965
0.99 9.0045 11.5233 13.4509 15.0743

0.99

2-sided 0.3263 0.2573 0.2213 0.1979
9.6389 12.3235 14.3794 16.1112

1/(1 +
which is 0.3333 0.2612 0.2240 0.2000
im O for

/The upper entry in each cell of the body of the table is

Y and the lower entry is A



Table P

Optimal allocation on the control (y0)

and associated A to achieve a given joint

con fidtlice coefficient l-o

p

f  3p/2 2p

S0.226 0.1811 0.1572 O).14
5. 2794 6 .q578 8. 2346 14. 30b6

O./ ind. d 0.2721 0.2177 0.189", 1.1705

6.4812 8.4,214 q.8977 11.1372

-'; iled 0.2453 0.1954 9).1693 0.15,3
5.7073 7.1472 8.8280 q.1608

2-!;ided 0.2791 0.2226 0.1930 0.1736
6.R135 8.8352 10.3750 11.6685

1-;ided 0.2620 0.2083 0.1802 0.1619
6.2002 8.0837 9.5186, 10.7242

2-sided 0.864 0.2277 0.1964 0.17692sdd 7.2128 4. 3331 10.9496l 17.3084

0-sd O777 0.2204 0.1903 0.17086.8170 8.8452 10.3919 11.6921

2-sided 0.2942 0.2331 0.201) 0.1804
7.7324 94.9824 11.000 13.144

l-,;ided 0.2939 0.2325 0.2004 0.175
7.7331 9.9851 11.704R 11.1515o .q'

2-sided 0.3033 0.2394 0.206: 0.184')
8.5352 10.9897 12.866,) 14.44,2

1-sided 0.3104 0.2441 0.2097 0.1874
9.4814 12.1834 14.251, 15.1932

0.99
2-,iIed 0.3136 0.2463 0.211 0. 1 87

10.1351 13.01,13 15.214.' 17.0'fl

1/(1 t d

whicL, is 0.3204 0.2500 0.2139 0.1907
lia for
(1-cr) 1

-'The ullpr ,ntry in ,ach cell of the body of the table is

0 ind the lower entry is A
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Table 9

Optimal allocation on the control (Y0)
0

and associated X to achieve a given joint

confidence coefficient 1-a

p =10

1-a

p/2 p 3p/2 2p

0.2174 0.1731 0.1501 0.1351
5.6252 7.4359 8.8138 9.9708

2-sided 0.2618 0.2089 0.1813 0.1632
6.8558 8.9378 10.5225 11.8532

1-sided 0.2354 0.1871 0.1619 0.1455

6.0635 7.9712 9.4237 10.6438

0.ho
2-sided 0.2686 0.2136 0.1849 0.1662

7.1964 9.3633 11.0140 12.4009

I-sided 0.2517 0.1996 0.1725 0.1548
6.5684 8.5919 10.1338 11.4295

0. " '

2-sided 0.2758 0.2186 0.1888 0.1694
7.6058 9.8752 11.6058 13.0607

I-sided 0.2672 0.2114 0.1823 0.1634
7.2003 9.3742 11.0323 12.4263

0. 0 '
2-sjdt'd 0.2835 0.2239 0.1930 0.1728

8.1385 10.5431 12.3790 13.9232

I-sided 0. 2831 0.2233 0.1921 0.1719
Li.13 9 3  10.5461 12.3844 13.9310

0. |o
)

2-sided 0.2924 0.2300 0.1977 0.1767
8.9621 11.5811 13.5Q16 15.2663

I-sided 0.2993 0.2346 0.201. 0.1795
9.9338 12.8102 15.0121 16.8667

0.99 2-sided 0 3025 0.2367 0.2027 ).1808

10.6057 13.6643 16.007' 17.9810

ii(1 + W)
which is 0.3090 0.2403 0.2052 0.1827
lim for
(1 -ca )"I

!/The upper entry in each cell of the body of the table is

-O and the lower entry is X
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2Numerical examples: Suppose that p 3 and a 1 (0 < i < 3); then

8 = p 3. If one-sided intervals are desired with d = 0.5 and

1-a = 0.95 then from Table 2 we find that .= 0.3475, X = 5.6993. Hence

2
N [((5.6993)1/0.5} 21 = [129.9] 130 and No = 46, N1 

= N2 N 3 = 28.
2 2

For the same specification with 0 = 1/2, a 1 (1 < i < 3) we have

A

8 = 2p = 6 and hence yO = 0.2770, X = 7.2350; thus N = 105, No = 30, N1,

N2 = N3 = 25. These calculations give an indication of the sensitivity of the
2

allocations and sample sizes to rather large changes in a0 and the ratio

2 2 2 2
ai/0 (1 < i < 3) when 1= 02 03 3.

2 2
If the experimenter is prepared to assume that a. = a (0 < i < p)1 _

wher,, the actual value of a2 is unknown, and he believes that

2 2 2 2 2
S 0< <0 where aL < a are known, then this information can be used in

2 2
designing the experiment, e.g., acting as if a = aU  leads to a conservative

choice of N. However, after the experiment has been conducted, when the

2
results are being summarized, the common unknown a should be estimated

2
using the pooled data, the estimate s being based on v = N - (p+l) d.f.

The estimate should then be used with Dunnett's (1955) formulae for joint con-

fidence statements (analogous to (M) and (II) of (2.1) and (2.2),

resp,-ctively):

(III) A 100(1-a) percent joint one-sided confidence statement

0  -i --7 - ( p (4.1)0 1 V,p,P NN 151i1)
N0 N1

or

(IV) A 100(1-a) percent joint two-sided confidence statement
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{0 -- 1,(a )  4 1

NO N
0 1

x xi + t'
( ) S -- +--- (1 i < p)1. (4.2)

0 V NO  N1

Here t (t'(a) ) is the upper a equicoordinate point of the p-variatevpp v ,p,P

t-distribution (p-variate Itl-distribution) with d.f. v and equal corre-

lations p = N /C (N ); tables of t are given by Krishnaiah and1 0 1 Vp,p

Armitage (1966) while tables of t'(a) are given by Hahn and Hendricksonv,p,p

(1971).

5. LOSS FROM EQUAL ALLOCATION ON ALL p + 1 TREATMENTS

It is of some interest to determine how much is lost in terms of increased

sample size if the experimenter uses equal allocatio, on all p + 1 treatments,

i.e., N0  N1 = .. N N/(p + 1), instead of the optimal allocation. For

this purpose we define the relative efficiency, RE = N/N. Here N and N are

the tot,,l sample sizes required to guarantee the same joint one-sided (two-sided)

confidence coefficient 1-a using (2.3) (using (2.4)) for given

2 2 2(a0,oa ..,o ) and specified d when the optimal allocation and equal allo-

cation, respectively, are employed. (Note that RE < 1, and small values of

RL indicate large relative savings by optimal allocation over equal allocation.)

2 2
We now determine RE for the important special case a. = a (0 < i < P).

(Other cases can be determined analogously.) For one-sided comparisons we

have (ignoring the integer restrictions)

N 2(pel){t ) i/2(o/d)}
2

Thus
2

RE -2-(1 - '2)
kTa p,' 1i/2
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for one-sided comparisons. Here t is the upper a-point of the,p,1/2

distribution of the maximum of p equicorrelated standard normal random

variables with common correlation P = 1/2; the values of t )  have been-,p,1/2haebn

tabulated for selected p and 1-a by Gupta, Nagel and Panchapakesan (1973).

(a)
For two-sided comparisons t in (5.1) and (5.2) is replaced by

t'(a) where t '(a) is the upper a-point of the distribution of the
,p,1/2 w ,p,i/2

maximum of the absolute values of p equicorrelated standard normal random
variables with common correlation P = 1/2; the values of (tp,/) 2

tabulated for selected -d and 1-a by Krishnaiah and Armitage (1965).

Entries for v = 60 1.. the tables of Hahn and Hendrickson (1971) can be used

as conservative approm. 'mations to to pa),p,1/2'

Some represetative RE - values for one-sided comparisons (similar

results would be obt'.ined for two-sided comparisons) are given in the following

table. Values of RE for One-Sided Comparisons

2 5 10

0.79 0.9986 0.9741 0.9390

0.91, 0.9818 0.9101 0.8433

.j 0.9759 0.8890 0.8121

It can be seen that the relative savings using the optimal allocation increase

with p and 1-a as would be expected; also, for fixed p and 1-a the

difference N - N is directly proportional to (/d) 2 .
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APPENDIX

Formulae for optimal allocation, and details of computation

A.1 Formulae for optimal allocation for one-sided comparisons (Reference BI):

Let 0(.) and 0(.) denote the standard normal distribution and density

function, respectively, and let Ok( " I P) denote the equicoordinate k-variate

standard normal distribution function with common correlation p. Then the

(Y0,A) given in Tables 1 through 9 are the unique solutions of the follow-

ing simultaneous equations (A.1) and (A.2):

f _ + X) (1-Y)1/2] dD(x) = 1-a, (A.1)

[(-O)y 2_-2Y+I]TOp-I[Tj(I -y )/ {2(I -y )+y s } ]  (A.2)

(p-l)y(l-y)8 ,1-(+ 1/2 1-y_]y8

2(1-y)+y8 *(t)#p-2 't3(1.y)+yO .(lIy)+y o

where

T = 'y (r l-y+yO][2(l-y)+y j

A.2 Formulae for optimal allocation for two-sided comparisons (Reference B2).

Here the (y0,X) given in Tables 1 through 9 are the unique solutions

of the following simultaneous equations (A.3) and (A.4):

f _C {[(L +)(lY)1/2] 1~ [yL. 11) 1-cpt (A.3)_ ( 8- - (lY- 2 lPd,(x)=-
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(1-8a)y22y+I]DI (p1 (-)] / 2  (A.4)

(-y+Y6) I1/2  [2(1-y)+yB] I1/ 2 { (T)D2 - a 3

whe!,e

D1 = DpI(-AI T, T1 I ( 1- y ) / { 2 ( 1 - Y ) + y O} ) ,

D2 = 0p_(-A2T , T2j(I-Y)/{3(I-y)+ya}),1 p-2 212

Dn3 = p-2(-T 3, 31 (I-y)/{3(I-y)+yO}),

T1 = T, T 2 = T[(l-Y+YS)/{3(l-y)+ya}] I1/ 2 
T 3  A A1 T 2

A, = {2(l-y)+yB}/ya, A 2 = {4(l-y)+y6}/ya, and

Ok(a,blp) = P{a < Z < b (i < i < k)} where the Z are standard

normal with corr{Z.,Z.} = p for i j, 1 < i, j < k.

A.3 Details of computation

The IMSL subroutine ZSYSTM was used to solve the pairs of simultaneous

equations (A.1), (A.2) and (A.3), (A.4). The stopping criteria used in

arriving at the final solutions were the following: i) the difference

between the left hand and the right hand sides of each equation is less than
-6

1 x 10 or (ii) in two successive iterations the corresponding trial values

of Y0 and A do not differ in the first six significant digits.

To evaluate a quantity of the form Ok(a.blP) (which includes *k (bjp)

as a special case for a - ) the following iterated integral represen-

tation (see equation (2) of Bechhofer and Tamhane (1974)) was used:
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Cr1/2 ir 1/2

k abP) f P) 1 2] 2 d(x) "

For p 2 the quantity 4p- (ablp) reduces to 0(b)-(a) and

p-2 (a,bip) = %0(ablp) = 1. Thus the evaluation of the various expressions

is particularly simple for p = 2.

To evaluate 0(-) the formula (26.2.17) given in Abramowitz and Stegun

-8.(1964) was used; this formula is accurate to within ± 7.5 x 10-  The Romberg

quadrature method was used to evaluate the various integrals. All of the

calculations were done on a CDC 6600 computer at Northwestern.

The tabulated values of Y0 are rounded off in the fourth decimal place

while the values of X are rounded up in the fourth decimal place (to insure a

joint confidence coefficient > l-a).
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